Simulation in Neurosurgery Supplement: Virtual Skull Base Drilling Neurosurgical Training

Screen Shot 2013-10-31 at 1.09.08 PMBackground: Through previous efforts we have developed a fully virtual environment to provide procedural training of otologic surgical technique. The virtual environment is based on high-resolution volumetric data of the regional anatomy. These volumetric data help drive an interactive multisensory, ie, visual (stereo), aural (stereo), and tactile, simulation environment. Subsequently, we have extended our efforts to support the training of neurosurgical procedural technique as part of the Congress of Neurological Surgeons simulation initiative.

Objective: To deliberately study the integration of simulation technologies into the neurosurgical curriculum and to determine their efficacy in teaching minimally invasive cranial and skull base approaches.

Methods: We discuss issues of biofidelity and our methods to provide objective, quantitative and automated assessment for the residents.

Results: We conclude with a discussion of our experiences by reporting preliminary formative pilot studies and proposed approaches to take the simulation to the next level through additional validation studies.

Conclusion: We have presented our efforts to translate an otologic simulation environment for use in the neurosurgical curriculum. We have demonstrated the initial proof of principles and define the steps to integrate and validate the system as an adjuvant to the neurosurgical curriculum.

From: Translating the Simulation of Procedural Drilling Techniques for Interactive Neurosurgical Training by Stredney et al.

Free full text access.