Ahead of Print: Elastic Fusion in Invasive Recording

Screen Shot 2014-11-06 at 9.32.01 AMBackground: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects.

Objective: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion.

Methods: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured.

Results: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus.

Conclusion: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.

From: Improved Localization of Implanted Subdural Electrode Contacts on MRI Using an Elastic Image Fusion Algorithm in Invasive EEG Recording by Stieglitz et al.

Full article access for Neurosurgery subscribers at Neurosurgery-Online.com.